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Abstract—The divergence in the computer architecture land-
scape has resulted in different architectures being considered
mainstream at the same time. For application and algorithm
developers, a dilemma arises when one must focus on using
underlying architectural features to extract the best perfor-
mance on each of these architectures, while writing portable
code at the same time. We focus on this problem with graph
analytics as our target application domain. In this paper, we
present an abstraction-based methodology for performance-
portable graph algorithm design on manycore architectures.
We demonstrate our approach by systematically optimizing
algorithms for the problems of breadth-first search, color
propagation, and strongly connected components. We use
Kokkos, a manycore library and programming model, for
prototyping our algorithms. Our portable implementation of
the strongly connected components algorithm on the NVIDIA
Tesla K40M is up to 3.25× faster than a state-of-the-art parallel
CPU implementation on a dual-socket Sandy Bridge compute
node.

Keywords-graph computations; BFS; color propagation;
GPU; parallel performance; portability

I. INTRODUCTION

Our work attempts to answer the following questions in
the context of graph computations and manycore processors:
(a) Can we identify frequently-used optimization strategies

from the large and growing collection of tuned parallel
graph computation implementations (e.g., [2], [5], [9],
[23], [37]), and create a structured methodology for
designing new parallel algorithms? If one were to
build a new framework for high-performance domain-
specific graph computations, what would be the key
optimization strategies to consider, and best practices
to follow?

(b) In addition to parallel-for, data-parallel scans, reduc-
tions, and sorting methods, what are some common
abstractions used to design parallel graph algorithms?

(c) Is it possible to develop performance-portable imple-
mentations of graph algorithms using advanced parallel
programming libraries and frameworks with the opti-
mizations and abstractions identified above?

We begin by observing that several recent graph algo-
rithms and their efficient implementations follow the loop
nest structure shown in Algorithm 1. The first point to

Algorithm 1 A template followed by several serial and par-
allel graph algorithms operating on a sparse graph G(V,E).
m = |E|, n = |V |, and m = O(n log n).

Initialize temp/result arrays At[1..n], 1 ≤ t ≤ l. ◃
l = O(1)
Initialize S1[1..n].
for i = 1 to niter do ◃ niter = O(log n)

Initialize Si+1[1..n]. ◃
∑

i |Si| = O(m)
for j = 1 to |Si| do ◃ |Si| = O(n)

u← Si[j]
Read/update At[u], 1 ≤ t ≤ l.
for k = 1 to |E[u]| do ◃ |E[u]| = O(n)

v ← E[u][k]
Read/update At[v].
Read/update Si+1.

Read/update At[u].

note in Algorithm 1 is that the listing uses only simple,
array-based data structures. Current state-of-the-art parallel
implementations for several graph problems use array-based
stacks, queues, and priority queues, as these structures are
more amenable to applying data-parallel operations such as
scans and reductions. Implementations of this general tem-
plate differ in terms of graph representation, data structure
access patterns, number of iterations of the outer loop, graph
topology-based heuristics to reduce total work, synchroniza-
tion overhead, etc. Intra- and inter-iteration dependencies
hinder automatic compiler-based loop transformations such
as unrolling, coalescing, collapse, and fusion.

Consider level-synchronous parallelizations of Breadth-
First Search (BFS). niter, the number of outer-loop iter-
ations, is bounded by the graph diameter. The arrays Si

correspond to the vertices in the current frontier, and the
adjacencies of these vertices can be visited in parallel.
Arrays of size n (At) are used to store parent information,
whether a vertex has been previously visited or not, and
distance from the source vertex. Finally, there is a barrier
synchronization before every iteration of the outer loop. For
low-diameter (diameter is O(log n)) graphs, the overhead
of barrier synchronization is insignificant in comparison to
the work performed in the inner loops. The arrays Si store
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vertices in an arbitrary order for BFS. For other algorithms,
such as ones for single-source shortest paths (SSSP), the
ordering of vertices in Si may be important to reduce the
outer-loop iteration count. The direction-optimizing heuristic
in a recent BFS algorithm [3] and the push-pull optimization
in a recent parallel SSSP algorithm [6] can be viewed
as work-reducing heuristics to switch between alternate
representations of Si in the inner loop.

The label propagation community detection heuristic [29]
and the PULP graph partitioning strategy [34] also fit within
this general template. They differ in the access patterns of
the temporary arrays and the result arrays in the inner loops.
Algorithms that are similar to level-synchronous BFS, such
as betweenness centrality [22], approximate diameter [8],
strongly connected components [33], and biconnected com-
ponents [32] also follow a similar structure. In fact, several
PRAM graph algorithms can be viewed as instances of this
template, and they would result in polylogarithmic parallel
time algorithms (assuming low-diameter graphs and/or a
O(log n) bound for the outer-loop iterations). This template
is not restricted to shared-memory algorithms. Distributed-
memory approaches for K-core decomposition also use a
label propagation-like strategy [25], and implementations
differ in the number of outer-loop iterations. Finally, open-
source software packages providing state-of-the-art paral-
lel implementations of graph algorithms, such as the Par-
allel Boost graph library [15], MTGL [4], Galois [19],
SNAP [21], PowerGraph [14], Ligra [31], NetworKit [35],
etc., include several programs that fall under the Algorithm 1
template.

So we hypothesize that the first step towards creating an
efficient parallel implementation of a graph algorithm would
be to recast it such that it fits the general template shown
in Algorithm 1. The focus of the current work is efficient
graph analytics on manycore platforms such as NVIDIA and
AMD GPUs and the Intel Xeon Phi MIC coprocessor. We do
not want to reinvent the wheel for data-parallel subroutine
implementations and parallel-for support. Hence, we use an
emerging node-level library and programming model called
Kokkos [11], that lets us write code that is portable to GPUs,
Intel Xeon Phi, as well as Intel and AMD x86 CPUs. In
Section II, we discuss key Kokkos features that enable us to
quickly develop and compare alternate implementations.

As the next step, we develop several manycore implemen-
tations for the graph problems of BFS, color propagation,
and strongly-connected components (SCC), expressing them
in the template shown in Algorithm 1. The inner loop
nests of BFS and color propagation have several differences,
and so we explore both of these problems. The general
manycore SCC algorithm is based on our prior multicore
SCC approach called Multistep [33]. Use of Kokkos lets us
develop several alternatives for each problem and conduct a
methodical evaluation of optimizations.

In Section III, we present the third step, the key op-
timizations that are critical to manycore performance and
portability. We primarily evaluate several tuned loop trans-
formation strategies for the inner loop nest, and we cus-
tomize these strategies for our use case of small-world graph
analytics. These loop transformations, in essence, improve
load balance and reduce irregular memory accesses. Our
proposed strategies are similar to a compiler-based loop
collapse [1], [30]. However, compilers cannot automatically
do this because of loop-carried dependencies. To the best
of our knowledge, this is the first work to explore the
loop transformations and manycore optimizations for SCC
and color propagation problems. We arrive at this portable
and performant manycore implementation of SCC using our
algorithmic template, a Kokkos-based implementation, and
architecture-aware optimizations.

The main observations from our empirical performance
evaluation (see Section IV) are as follows:
• Our new loop collapse strategy, termed Local Manhattan

Collapse, is very effective on GPUs and consistently
results in the highest-performing variant for several prob-
lems.

• A GPU SCC implementation using the Local Manhattan
Collapse strategy demonstrates up to a 3.25× speedup
relative to a state-of-the-art parallel CPU implementation
running on a dual-socket compute node.

• We find our GPU BFS implementation averages 1.74
GTEPS across a suite of 12 test graphs, comparable to the
current state-of-the-art, without any BFS-specific tuning.

II. PORTABLE GRAPH ALGORITHMS FOR MANYCORE

A. The Kokkos Programming Model

The Kokkos library [11] was originally developed as a
back-end for providing portable performance for scientific
computing frameworks, but has since been extended to a
more general-purpose library for parallel execution. The
two primary capabilities of Kokkos include polymorphic
multidimensional arrays optimized for varying data access
patterns/layouts in different architectures and thread parallel
execution that allows for fine-grained data parallelism on
manycore devices.

The parallel execution model follows a dispatch model,
where a single master CPU thread divides some N units
of work to be processed on GPU. Each unit of work is
executed by a single thread or thread team. On GPU, a
thread team is comprised of multiple warps each executing
on the same multiprocessor. This team of threads operates in
a data parallel SIMT fashion, and is able to “communicate”
via shared memory. In addition to optimizing the data layout
in different devices, Kokkos also provides us the option to
use the hierarchy of memory in manycore devices, such
as thread block shared memory and texture cache. We use
these features of Kokkos for the appropriate data structures.
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We also use the fast atomic operations and “thread team
level” scan and reduction operations to synchronize between
different threads in a thread block. One of the key design
decision we made, using low-level simple array-based data
structures, helps us when using Kokkos, as the layout of
these simple arrays is then optimized by Kokkos in different
devices (CPUs, GPUs and Phis), different types of memory
(e.g., shared memory), and different access patterns (e.g.,
coalesced access). Use of custom data structures that are
optimized for any single architecture would have prevented
Kokkos level optimizations, in turn affecting portability.

B. BFS

BFS is one of the most widely used basic graph subrou-
tines, appearing in a vast number of more complex graph
analytics. The goal of BFS is commonly to determine from
a given root vertex either reachability status, distance, or
BFS tree parent-child relationships for all or some subset
of vertices in a graph. On each iteration i ∈ niter of
the algorithm, the status for all vertices that are distance
i away from the root is updated. Described in terms of
Algorithm 1, we would first initialize S1 to contain only the
root. To determine distances, our result array A would be
initialized to −1 for all vertices except for the root, which
would be initialized to 0. Each iteration will examine all
edges of all vertices in Si. When a vertex v is encountered
such that A[v] < 0, we update A[v] to i and place v
into Si+1. There has been a lot of recent work focused on
optimizing both CPU and manycore-based implementations
of BFS [3], [7], [12], [16], [17], [23]. We don’t explicitly
consider fully optimizing BFS itself through our framework,
but rather show how close we can get to state-of-the-art
traversal rates by only considering simple techniques that
affect per-unit-work assignments and which are applicable
to a much broader class of algorithms.

C. Color Propagation

Color propagation is an iterative procedure that is useful
for many different graph connectivity problems [27], [31]–
[33]. An overview of the general algorithm is given by
Algorithm 2. Note how it also follows the Algorithm 1
template, where Si is our current queue and the result array
A can be considered as the current color assignments for
all vertices in the graph. We initialize A to be unique
vertex identifiers and S1 as all vertices in the graph. We
then examine all edges, and when there exists a source
vertex that has a higher color than one of its neighbors,
that vertex propagates its color to the neighbor. The next
work set Si+1 is comprised of vertices that have had their
color altered. This process continues iteratively until no
further propagations occur. As with BFS, we implement
color propagation in a straightforward manner within our
general framework.

Algorithm 2 Color Propagation pseudocode.
A[1..n]← 1..n ◃ Set A[i] = i, 1 ≤ i ≤ n
S1[1..n]← 1..n ◃ Set S1[i] = i, 1 ≤ i ≤ n
i← 1
while Si ̸= ∅ do

Si+1 ← ∅
for j = 1 to |Si| do

u← Si[j]
for k = 1 to |E[u]| do

v ← E[u][k]
if A[u] > A[v] then

A[v]← A[u]
Add v to Si+1

i← i+ 1

D. Strongly Connected Components
The problem of computing strongly connected compo-

nents (SCCs) in large directed small-world graphs is a com-
mon analytic for social networks [24] and a preprocessing
step in scientific computing (among other uses) [28]. Using
either BFS or coloring, straightforward parallel strongly
connected component decomposition algorithms can be
implemented [27], [36]. Combining both subroutines into
an efficient Multistep procedure can result in considerable
speedup for small-world graphs [33]. We use the BFS and
color propagation subroutines implemented in our frame-
work to perform graph SCC decomposition via the Multistep
procedure (we refer the reader to [33] for a more detailed
description). Once again, outside of a few changes to initial-
izations and the very innermost loops, few alterations need
to occur to the original BFS and color propagation codes for
the SCC problem.

III. OPTIMIZATION METHODOLOGIES

In this section, we describe the optimization techniques
used to achieve scalable performance on manycore architec-
tures. These techniques are applicable to any algorithm that
fits the template described in Algorithm 1. Furthermore, the
optimizations are general enough for architectures that share
similar characteristics, such as a very high core count, hierar-
chical memories, and small amounts of memory per thread.
These characteristics of present day GPUs is expected to
hold or become increasingly important in future manycore
architectures. As a result, the optimizations described here
are critical for scalable algorithms on modern and future
systems.

A. Thread Teams, Local Synchronization, Shared and
Global Memory

Current GPUs are organized as a number of streaming
multiprocessors (for instance, 16 in a NVIDIA Maxwell
GM204), each with a number of smaller cores (e.g., 128
CUDA cores in GM204). The number of threads that can
be scheduled in a single streaming multiprocessor of a GPU
can be up to 2048. The number of warps per streaming mul-
tiprocessor is 48-64, and the number of thread blocks is 8-16,
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depending on the microarchitecture. A similar hierarchy is
also seen in the multiple hyperthreads per core of a Xeon Phi
coprocessors, along with NUMA effects due to placement of
cores near different memory regions. This results in multiple
levels of parallelism for which algorithm developers need to
design. The programming model in Kokkos abstracts this to
a thread team, where a thread team corresponds to a thread
block on GPU. In order to effectively utilize a streaming
multiprocessor (SM), it is crucial to be able to schedule
multiple thread blocks in each SM. Within each thread block,
there is enough concurrency for thousands of threads, so that
multiple warps can be kept busy at the same time. All of
our algorithms use the thread teams concept to synchronize
locally and utilize shared memory to communicate within a
team when necessary.

The number of thread blocks that can be scheduled
concurrently in a single SM is determined by the amount
of shared memory used by each thread block (or a thread
team). As all the threads in a team use the shared memory
to synchronize among themselves before synchronizing to
the global memory, the amount of shared memory used is
an important resource. Increasing its size would reduce the
number of writes to global memory by doing more local
synchronizations, but it would also decrease the number
of concurrent thread blocks that can be scheduled. Our
approach balances shared memory usage with the parallelism
available within each thread block. Finally, it is important
that reads and writes to global memory are coalesced.
Essentially, we want reads and writes for a single warp to be
to be performed at neighboring global memory addresses to
reduce total memory bandwidth, improve cache utilization,
and ensure that threads in the warp are not idle waiting for
the memory request of a single thread.

B. Hierarchical Exploration to Improve SM Utilization
A common optimization technique for algorithms dealing

with irregular graph structure is special handling of the
fringe cases, i.e., vertices with degree much larger than the
average [16], [23]. This can be done at the granularity of a
single level or through considering multiple classes of ver-
tices in a hierarchy. In the GPU context, this might translate
to a thread block working together to explore the edges of a
vertex with an out-degree greater than the number of threads
in the thread block, while a warp would explore vertices
with an out-degree greater than the number of threads in a
warp, but smaller than the number of threads in a block.
Smaller vertices would be handled by individual threads.
This general hierarchical technique has been previously used
for irregular graph problems, referred to as the deferring
outliers [16] and the CTA+Warp+Scan [9], [23] approaches.

Our implementation of this technique, which we term as
Hierarchical Expansion, is given by Algorithm 3. In the
Kokkos model, we consider parallelism at three hierarchies:
team-level, warp-level, and thread-level. For each iteration

Algorithm 3 Hierarchical Expansion.
Initialize A and S1

for i = 1 to niter do
Initialize Si+1[1..n].
for all Thread Teams do ◃ Team-level parallelism

Retrieve subset VT from Si

for j = 1 to |VT | do ◃ Thread-level parallelism
v ← VT [j]
if |E[v]| > |T | then

Add v to QT ◃ Team-shared Queue
else if |E[v]| > |W | then

Add v to QW ◃ Warp-shared Queue
else

Add v to Qt ◃ Thread-owned Queue
Team-level synchronization
for j = 1 to |QT | do

v ← QT [j]
for k = 1 to |E[v]| do ◃ Thread-level parallelism

u← E[v][k]
Read/update A[u]

Warp-level synchronization
for j = 1 to |QW | do ◃ Warp-level parallelism

v ← QW [j]
for k = 1 to |E[v]| do ◃ Thread-level parallelism

u← E[v][k]
Read/update A[u]

for j = 1 to |Qt| do ◃ Serial expansion by thread
v ← Qt[j]
for k = 1 to |E[v]| do

u← E[v][k]
Read/update A[u]

Team-level synchronization
Update Si+1

of our algorithm, we remove a chunk of vertices VT from
the input work set Si and pass it to a Kokkos thread team
T . For good team-level work balance and multiprocessor
utilization, the size of VT is usually within a small factor
of the size of T . The threads in each team work to pro-
cess their input set, placing the high-degree vertices they
encounter into a team-shared queue (when the degree is
greater than the size of the thread team |T |) or warp-
shared queue (when the degree is smaller than the size of
a thread team, but larger than the size of a warp |W |).
Smaller vertices get placed into a small thread-owned buffer
Qt for later serial expansion. The vertices in the team-
level queue QT are collectively expanded by all threads,
with potential updates to Si+1 kept in team-level shared
memory. Once the QT queue is exhausted, the warp queue
QW is examined. Each warp removes a vertex from the
queue, and cooperatively expands its adjacencies. Finally,
each individual thread serially expands the vertices in its
buffer. Once all work is exhausted, the team collectively
pushes their updates to the next iteration’s work set Si+1.
We use team-level scans and reductions whenever possible
to minimize global synchronizations.

The primary benefit to this type of approach is that it
allows fine-grained warp utilization by limiting the serial
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expansion of high degree vertices by a single thread or warp.
This leads to better load balance at the thread and warp
level. This approach also allows the use of shared memory to
create new queues for the next iteration of an irregular graph
problem, reducing the number of global synchronizations
required. However, as vertices are assigned to a single team
statically, there can still be some imbalance at the highest
level. All teams might finish their work long before the team
owning a highly-skewed vertex completes, delaying the start
of the next iterations and vastly under-utilizing available
processing resources.

C. Loop Collapse for Better Load Balance
As shown by the template in Algorithm 1, many graph

algorithms follow the pattern of two nested loops, where
the outer loop is over the vertices and the nested inner loop
is over the edges. Often, these two loops are not perfectly
nested, as the vertex contents of the outer loop determine
the start and end indices for the edges examined of the inner
loop. There might be additional operations within the outer
loop, such as changing the properties of vertices, adding
vertices to the next queue, etc. While perfectly nested loops
are great candidates for compiler-based optimizations, loops
containing these other operations cannot be automatically
optimized by compilers.

The importance of collapsing these loops increases when
both loops are parallelizable and when the work in different
outer loop iterations is heavily unbalanced. In graph analytic
algorithms on graphs with skewed degree distributions, when
the work in the outer loop varies based on the degree of
the vertices, collapsing the inner loop is critical. When
there are few threads, like in the CPU, a simple dynamic
scheduling runtime can alleviate the problem [33]. However,
it is hard to scale this approach to the thousands of threads in
manycore devices. In our framework, we do the optimization
a compiler might do, and collapse the two loops over vertices
and edges into a single loop over all possible edges.

We employ the Manhattan Collapse [30], where a prefix-
sum operation, easily parallelizable on GPUs with a scan-
based procedure, is used to compute the bounds of each
outer loop iteration. With the results of the prefix sums, a
binary search is then used to compute the indices of the
original inner-loop and outer-loop within the collapsed loop
(references as HIGHESTLESSTHAN in Algorithms 4 and 5).
The overhead associated with reverse-engineering the vertex
information is offset by the good load balance achieved by
each thread. This general approach has been explored before
by Merrill et al. for GPUs in the context of BFS [23] and by
Davidson et al. for SSSP [9]. As with the work of Davidson
et al., we consider two forms of the Manhattan Collapse,
implementing it at both the global and local level.

1) Local Manhattan Collapse: For our local implemen-
tation, we do not require any additional global storage, apart
from the queues and work arrays updated in the algorithm.

An overview of this approach is given by Algorithm 4. We
statically partition our work set Si on a per-vertex basis and
pass each partition VT to our thread teams. The thread team
computes prefix sums P over VT based on out-degree. P
is stored in shared memory. The final prefix sum in P is
the sum of edges for VT , and therefore proportional to the
total work that the team needs to do. We can then equally
distribute this work among all the threads in the team. To get
a specific edge based on a per-thread work assignment j, the
source vertex is determined by examining the prefix sums
array, and finding the index k that corresponds to a value
in P greater than or equal to j, and less than the value at
the next highest index. The specific out-edge u from the
source vertex can be found by using the difference between
the work assignment and the value at the found index in the
prefix sums. With the (u, v) pair, the thread can now perform
its assigned work.

Algorithm 4 Local Manhattan loop collapse.
Initialize At and S1

for i = 1 to niter do
Initialize Si+1[1..n]
for all Thread Teams do ◃ Team-level parallelism

Retrieve subset VT from Si

P ← PrefixSums(VT )
Max← max(P )
for j = 1 to Max do ◃ Thread-level parallelism

k ← HIGHESTLESSTHAN(P, j)
u← VT [k]
v ← E[u][j − P [k]]
Read/update At[u] and At[v]

Team-level synchronization
Update Si+1

The primary benefit of the Local Manhattan Collapse is
that it leads to full warp and thread utilization of processor
resources. When the cost of looking up a work assignment
is low compared to the work that needs to be done, this
approach is highly beneficial. As with Hierarchical Explo-
ration, a major drawback to doing the Local Manhattan
Collapse is that a vertex is still assigned to a single team,
which might lead to work imbalances for highly skewed
graphs.

2) Global Manhattan Collapse: To alleviate any potential
work imbalance issues, we implemented a fully-partitioned
approach, where the prefix sums for the current iteration are
computed on the previous iteration as updates were pushed
to the next-iteration work set Si+1. By doing this, we can
statically distribute an equal number of edges to each team
instead of vertices. As can be seen in Algorithm 5, the
approach closely follows our local method. The primary dif-
ference lie in the prefix sum arrays, Pi and Pi+1, which must
be globally stored and synchronously updated. To minimize
data transfer requirements, each thread team can determine
its start and end offsets in Pi and do a single transfer of
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Algorithm 5 Global Manhattan loop collapse.
Initialize At and S1

Initialize P1

for i = 1 to niter do
Initialize Si+1[1..n]
for all Thread Teams do

Retrieve subset jT to jT+1 of max(Pi)
for j = jT to jT+1 do ◃ Thread-level parallelism

k ← HIGHESTLESSTHAN(Pi, j)
u← VT [k]
v ← E[u][j − Pi[k]]
Read/update At[u] and At[v]

Team-level synchronization
Update Si+1 and Pi+1

the needed portion to shared memory. Additionally, pushes
to Pi+1 and Si+1 can also be coalesced, with only a single
atomic update required per team. Because each team needs
to determine the offset to start writing to Pi+1, as well as
the current running sum, we package both these values into
a single atomically-updated 64-bit long int and perform
an atomic fetch-and-add on a current global value.

Ideally, the Global Manhattan Collapse should offer the
best work partitioning among thread teams and fastest ex-
ecution times for a given algorithm. However, as we will
show in our results, there are other key factors that hurt
the performance of the Global Manhattan Collapse relative
to the Local method. For simple graph algorithms with
minimal work per edge, the cost of reading and writing
to an additional global array is relatively high. Amortizing
this startup and end cost by increasing work per team is
not necessarily a good solution, as we would ideally like
to have an as-large-as-is-practical number of teams to hide
the memory access latencies inherent to the rest of the
implemented algorithm. Further, on graphs with a relatively
consistent degree, or a modest number of outliers, this
method offers no additional benefit in terms of equal per-
team work distribution relative to the local collapse. Finally,
the maximal degree of many real-world graphs is bounded
by O(

√
n). As long as the maximal degree is less than O(n)

and there are relatively few outliers, the level of fine-grained
global work distribution offered by the global collapse is
likely not necessary.

IV. PERFORMANCE ANALYSIS AND DISCUSSION

A. Experimental Setup
We evaluate our algorithms on single nodes of three

clusters, the Shannon and Compton systems at Sandia and
the NSF Blue Waters system at the NCSA. A Shannon node
has two Intel Xeon E5-2670 Sandy Bridge-EP processors
with 128 GB main memory and an NVIDIA Tesla K40M
GPU. The K40M GPU has 12 GB DDR5 memory, 2880
cores, and a peak memory bandwidth of 288 GB/s. Each
GPU-enabled compute node of Blue Waters has one AMD
6276 Interlagos processor with 32 GB main memory and
an NVIDIA Tesla K20X GPU. The K20X GPU has 6 GB

Table I
INFORMATION ABOUT TEST NETWORKS. COLUMNS ARE # VERTICES, #

EDGES, AVERAGE AND MAX. DEGREE, # OF SCCS, # NUMBER OF
NONTRIVIAL SCCS, AND SIZE OF THE LARGEST SCC.

Degree (S)CCsNetwork n m
avg max Count nontriv. max

Google 875 K 5.1 M 5.8 5 K 370 K 12 K 410 K
Flickr 820 K 9.8 M 12 10 K 277 K 7.3 K 530 K
XyceTest 1.9 M 8.2 M 4.2 250 400 K 2.0 K 1.5 M
LiveJournal 4.8 M 69 M 14 20 K 970 K 23 K 3.8 M
RMAT2M 2.0 M 128 M 64 8.7 K 1 M 1 1.0 M
GNP2M 2.0 M 128 M 64 95 1 1 2.0 M
Indochina 7.4 M 194 M 26 180 K 1.6 M 40 K 3.8 M
DBpedia 67 M 258 M 3.9 650 K 55 M 2.9 M 8.9 M
HV15R 2.0 M 283 M 140 170 K 24 K 15 120 K
uk-2002 18 M 398 M 16 4 K 3.7 M 70 K 12 M
WikiLinks 26 M 600 M 23 400 K 6.6 M 60 K 19 M
uk-2005 39 M 936 M 24 130 K 5.8 M 223 K 26 M

DDR5 memory, 2688 cores, and a peak memory bandwidth
of 250 GB/s. For GPU parallelism, Kokkos uses the CUDA
programming model. We use Compton nodes for running
our Kokkos and OpenMP implementations on its Intel Xeon
processors and Intel Xeon Phi MIC coprocessors (Kokkos
also utilizes OpenMP for multicore parallelism). Compton
nodes are identical to Shannon nodes but only have 64 GB
memory and house MICs containing 57 cores at 1.1 GHz
with 6 GB memory. In all cases, the version of Kokkos used
in our evaluation came from release 11.10.1 of Trilinos, we
used icc and nvcc with the -O3 optimization option for
compilation along with -arch=sm_35 when compiling for
GPU.

We used several real small-world directed graphs that
range in size from 5.1 million to 936 million edges for
testing. These are listed in Table I. The graphs are from the
SNAP database [21], the Koblenz Network Collection [20],
and the University of Florida Sparse Matrix Collection [10].
We selected these graphs to represent a wide mix of graph
sizes and topologies. Graph topology also has a strong
influence on the performance of BFS and color propagation,
while the number of total and nontrivial SCCs, as well
as the size of the largest SCC, play an important role in
determining performance of the SCC algorithm.

We report BFS and color propagation performance in
terms of the Giga Traversed Edges per Second (GTEPS)
metric, which normalizes running time to the total number
of edges accessed (in billions). Note that our input graphs
are directed and most of them have a large SCC. For
each BFS execution, we track the total number of edges
visited. Similarly, we count the number of vertex color
and edge updates to determine overall performance for
color propagation. We also run multiple iterations of both
algorithms on all the target systems to reduce any variation
in running time. In order to be consistent with BFS and
color propagation results, we normalize SCC performance
also by the number of edges and report an overall GEPS
(Giga Edges per second) rate for each graph.
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Figure 1. BFS performance on Tesla K40M using Manhattan-Local (ML), Manhattan-Global (MG), and Hierarchical (H) loop collapse strategies.

For the Kokkos GPU approach, we fix thread queue
sizes at 16, work chunks at 256 vertices per thread team
for Hierarchical and Local Manhattan, and work chunks
at 2048 per thread team for Baseline (vertex chunks) and
Global Manhattan (edge chunks). For Xeon Phi and CPU,
we used larger queues of size 1024 and work chunks of
2048. These values were selected for exhibiting the fastest
performance across a range of values on our test suite.
We will fully explore the performance impact of these
algorithmic parameters in future work.

B. BFS Performance
Figure 1 gives the performance rates of the Kokkos-

based BFS implementations on the Tesla K40M GPU. The
baseline rate in the figure corresponds to performance with
a vertex-based partitioning of the frontier array among
thread teams. It is not a trivial implementation and our
speedup numbers are conservative in that sense. We see
consistent and significant speedups with three loop collapse
strategies (H: hierarchical, MG: Manhattan Collapse using
global memory, ML: Manhattan Collapse using GPU shared
memory). Using H, MG, and ML, the speedups (geometric
mean) over baseline are 1.82×, 1.82×, 3.85×, respectively,
for the twelve graphs considered. The graphs are ordered
in the figure in increasing order of average vertex degree,
from DBpedia (3.9) to HV15R (140). Apart from a couple of
anomalies, there is a reasonable correlation between average
vertex degree in the graph and the BFS performance of the
best variant (ML). Prior GPU graph algorithms work [17]
has also made similar observations. However, one striking
aspect is that the tuned variant can be more than an order-
of-magnitude faster than the baseline, as we note for the
Flickr graph. This is likely due to the large skewed degree
distribution of Flickr, which severely limits the performance
of the baseline approach. Other work has also noted the
importance of parallel work balance with this particular
graph [9].

Next, we summarize the impact of other optimization
strategies discussed in Section III. Figure 2 gives BFS
performance of the baseline and the ML variant again. In

addition, we add optimizations in a structured manner to
the code, starting with Baseline and finally getting to tuned
ML (indicated by M+C+S+L in the figure). The interme-
diate steps are untuned Manhattan Collapse (indicated by
Baseline+M), Manhattan Collapse with memory coalescing
(M+C), Manhattan Collapse with memory coalescing and
utilizing team-based scan procedures (M+C+S). The final
step is the usage of temporary shared memory arrays for
each thread team. It is interesting to note that Manhattan
Collapse by itself does not provide much performance
improvement. It is only after a methodical restructuring of
the code, including optimizations such as coalescing and use
of optimized scan primitives, that we are able to get the full
benefit of the loop collapse optimization.

C. Color Propagation Performance

Figure 3 shows the performance of the loop collapse
strategies on color propagation. Unlike BFS, the global
Manhattan Collapse strategy does not consistently improve
performance over the baseline. For a majority of the graphs,
it is actually slower than baseline. Using H and M, though,
the speedups (geometric mean) over baseline are 1.72× and
3.10×, respectively, for the twelve graphs considered. Per-
formance of the best variant (ML) seems to well-correlated
with average graph degree, with the exception of the syn-
thetic RMAT2M and GNP2M graphs. We see the highest
overall speedup over baseline (nearly 4.5×) with the Flickr
graph. MG performs poorly on several instances due to the
nature of iterative color propagation, which tends to have a
long tail containing lots of low degree vertices. This effect is
especially pronounced on the web graphs (uk, IndoChina),
which tend to have long strings of singly-connected vertices.
This hurts the performance of MG relative to ML in two
ways. Firstly, the low average degree increases the amount
of total transfer per team to and from the global prefix sum
array. Secondly, the consistently low vertex degrees offer
no benefit with regards to work partitioning among teams
relative to the other approaches.

23



●

●●

●

●

●

●
●

●

●

0

1

2

3
D

B
p
e
d
ia

X
yc

e
Te

st

G
o
o
g
le

F
lic

kr

L
iv

e
Jo

u
rn

a
l

u
k−

2
0
0
2

W
ik

iL
in

ks

u
k−

2
0
0
5

In
d
o
C

h
in

a

H
V

1
5
R

Graph

G
T

E
P

S

Optimizations ●  M(+C+S+)L  M(+C+S)  M(+C)  Baseline+M

●

●

●

●
●

● ●
●

●

●

0.0

2.5

5.0

7.5

10.0

12.5

D
B

p
e
d
ia

X
yc

e
Te

st

G
o
o
g
le

F
lic

kr

L
iv

e
Jo

u
rn

a
l

u
k−

2
0
0
2

W
ik

iL
in

ks

u
k−

2
0
0
5

In
d
o
C

h
in

a

H
V

1
5
R

Graph

S
p
e
e
d
u
p
 v

s.
 B

a
se

lin
e

Optimizations ●  M(+C+S+)L  M(+C+S)  M(+C)  Baseline+M

Figure 2. Impact of various optim. strategies (Manhattan Collapse (M), coalescing (C), team-scan (S), and local primitives (L)) on Tesla K40M BFS
performance.
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Figure 3. Color propagation performance on Tesla K40M using Manhattan-Local (ML), Manhattan-Global (MG), and Hierarchical (H) loop collapse
strategies.

D. SCC Evaluation and Performance Portability

We finally evaluate performance of various SCC im-
plementations. Recall that SCC algorithms use both BFS-
like and color propagation-like loop nests, in addition to
other graph topology-related work reduction heuristics [18],
[33]. Our baseline Kokkos implementation for SCC is based
on our prior Multistep [33] multicore parallel algorithm.
Note that the BFS subroutine in Multistep is direction-
optimizing, similar to [3], [7]. Thus we have also been
able to express a fast heuristic work-reduction strategy in
our Kokkos framework. We further improved the baseline
approach using the ML and MG loop collapse strategies, and
other GPU-specific optimizations. Figure 4 provides a cross-
platform comparison of the various approaches on our test
suite. Performance rates are indicated in terms of billions of
edges per second. Our prior CPU Multistep implementation
uses OpenMP, and can be compiled and run on x86 systems
as well as Intel’s Xeon Phi coprocessors. We thus report
these results on the Sandy Bridge-EP host processor and
the Xeon Phi coprocessor, indicated as SNB and KNC
in the figure. The OpenMP Multistep implementation is
labeled OMP. The Kokkos baseline approach runs on all
four platforms, and it is labeled as previous (B). Because

Kokkos uses a single thread per team for the Xeon Phis
and CPU, we only report performance for the MG variant
of loop collapse on these systems, as the ML variant would
default into an inefficient (B). We don’t consider hierarchical
exploration due to the consistently superior performance of
MG in previous experiments. We only include ML as a
comparator for systems that can’t utilize MG. Any missing
data points in both Figure 4 and Table II are due to memory
limitations on the GPUs and Xeon Phi.

Consider the SNB column of the figure first. We observe
that the OMP multistep performance varies between 0.1
to 5 GEPS, a nearly 50× variation. The anomalously-
high performance on RMAT2M and GNP2M is due to
the fact these synthetic graphs are relatively easy instances
for the Multistep algorithm (there is only a single non-
trivial SCC, so color propagation is never run). The graphs
are ordered from top to bottom by average vertex degree.
While OMP tends to do better than the Kokkos baseline on
smaller graphs, for four of the twelve graphs, including the
larger uk web crawls, the Kokkos baseline is in fact faster
than the state-of-the-art OpenMP-based Multistep. MG, the
algorithmic variant designed for GPUs, did not do as well
as the baseline in SNB.

The Xeon Phi performance results are quite interesting.
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Figure 4. Cross-platform performance comparison of SCC implementa-
tions.

The Kokkos baseline variant now consistently outperforms
Multistep OMP. In comparison to parallel SNB performance,
the absolute performance results on KNC are lower. How-

Table II
CROSS-ARCHITECTURAL PERFORMANCE COMPARISON OF BEST

VARIANTS.

SCC BFS Coloring
Network SNB KNC K20X K40M K40M vs K20X

GEPS GTEPS ratio

Google 0.16 0.08 0.09 0.15 1.66 1.19
Flickr 1.29 0.14 0.38 0.56 1.37 1.00
XyceTest 0.25 0.13 0.14 0.23 1.08 1.16
LiveJournal 1.03 0.24 0.53 0.68 1.11 1.04
RMAT2M 4.99 0.47 1.28 1.35 1.13 0.95
GNP2M 3.66 0.56 1.06 1.05 1.04 1.04
Indochina 0.30 0.09 0.11 0.18 1.08 1.22
DBpedia 0.20 0.33 0.34 0.82 1.16
HV15R 2.09 0.43 1.18 1.23 2.20 0.99
uk-2002 0.55 0.20 0.33 1.26 1.15
WikiLinks 0.79 0.45 1.27 1.12
uk-2005 0.22 0.18

Geom mean 0.69 0.21 0.35 0.43 1.23× 1.09×

ever, note that these results were obtained with little or no
parameter tuning for KNC. Besides three instances, MG
again lags behind baseline. Thus we can conclude that the
loop collapse strategies designed specifically for GPUs may
not really lead to portable performance on KNC, without
additional tuning.

The GPU SCC performance results are as expected.
Notably, we could easily combine the Kokkos BFS and
coloring implementations to create this SCC algorithm, and
overall performance is quite favorable in comparison to the
best parallel CPU implementation.

The original Multistep algorithm compiled with OpenMP
and running on CPU shows the most consistent per-
formance, followed by the GPU Kokkos ML algorithm
running on GPU. Exploring cross-architectural and cross-
implementation performance on each graph instance, we
note different reasons for why a particular implementation
is faster or slower. Multistep was designed to run on CPU
with low diameter graphs and, as such, tends to domi-
nate performance-wise on the smaller graphs, where there
is lower available work parallelism, the graphs are less
skewed, and the problems are generally easier to solve. This
is apparent on the two simplest instances, the GNP and
RMAT graphs. The GPU ML code arguably shows increas-
ing relative performance with increasing problem difficulty,
which is exemplified by DBpedia, the most skewed graph
with the largest number of nontrivial SCCs. The additional
parallelism for GPU ML across the adjacencies of the largest
outliers in DBpedia makes a large relative impact. MG for
both CPU and GPU does not show as good performance for
DBpedia because, while there is improved parallelism across
the largest adjacencies, DBpedia also has a very long tail of
low degree vertices. This makes color propagation run very
slow with MG due to all of the additional read and writes
to the global prefix sums array.

In Table II, we list the SCC GEPS rate of the best-
performing variant on each platform. The geometric mean
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of GEPS rates on each platform for SCC are also listed.
Overall, K20X is 1.67× faster than KNC for SCC. For BFS
and Coloring, we compare performance of the best variant
on K40M to the best-performing one on K20X. We observe
that K40M is overall 1.23× faster for BFS and 1.09× faster
for color propagation.

Although we note the present performance benefit of
running on the multicore system relative to our manycore
implementations, we make a few final points. Current trends
in HPC indicate increased parallelism to become more
prevalent, with an explicit distinction between a host CPU
and coprocessor/GPU becoming blurred. This will make any
present performance gaps between multicore and manycore
codes less relevant. Additionally, more complex memory
hierarchies and wider variation in architecture designs will
make it a challenge to write algorithms that are efficient
on future architectures. Hence, as we motivated previously,
developing manycore techniques that exploit wide paral-
lelism and varied memory hierarchies through reliance on a
general framework and back-end for architecture-optimized
parallelization will ease the burden on algorithm designers
to design portable code for future systems.

E. Comparisons to Prior Work
To the best of our knowledge, this is the first work on

Kokkos-based graph computations targeting GPUs and Xeon
Phi accelerators. For SCC, we performed direct compar-
isons with our prior OpenMP based Multistep method, as
discussed in the previous subsection. In terms of mean per-
formance rates, we believe that 0.43 GEPS for SCC, using
a high-level framework such as Kokkos, is significant. Our
mean BFS performance rate on the K40M is 1.74 GTEPS
across all the test networks considered, and the best rate is
2.82 GTEPS for the RMAT2M network. Recently, Nguyen
et al. [26] compare performance of several parallel graph
analysis frameworks (Ligra, Galois, PowerGraph, GraphChi,
and variants) for various graph analytics routines on a 40-
core Intel Westmere-EX system. The best BFS performance
reported, with Galois on the twitter40 graph, corresponds
to a GTEPS rate of 2.1. Merrill et al. [23] report up to
3.3 GTEPS on the RMAT2M network for an optimized
CUDA BFS implementation. For tuned CUDA-based SSSP
approaches, Davidson et al. [9] report a peak performance
rate of 0.35 GTEPS on an RMAT network and an NVIDIA
GTX 680 (GK104). Thus, we believe that our approaches
are competitive with the current state-of-the-art on multicore
and manycore platforms.

V. CONCLUSIONS

We used an algorithmic template that is common to
lot of graph algorithms to express algorithms for strongly
connected components, breadth first search and color prop-
agation. This algorithmic template was used for portable
manycore implementations using the Kokkos library and

then optimized for architecture specific features like teams
of threads and algorithmic features like loop-collapsing.
We gave credence to the the efficacy of our approach
by demonstrating the performance of a strongly connected
components algorithm that is up to 3.25× faster than a
parallel CPU implementation.

We conclude with some commentary on questions posed
in Section I. To answer questions (a) and (b), we advocate
using simple array-based data structures and an iterative
loop nest to perform graph computations, as shown in Algo-
rithm 1. This simplifies transitioning from serial to multicore
to manycore algorithms. The Local Manhattan Collapse
optimization proved to be the biggest contributor to per-
formance improvement over a baseline version. Given that
most current and emerging real-world networks have skewed
degree distributions, this would be the primary optimization
strategy for graph analytics. The algorithms we studied in
this paper use the abstraction: “given a large unordered set of
vertices, how do we efficiently read and update attributes of
the vertices and their adjacencies?” Using Kokkos, we see
promising results for performance portability. The perfor-
mance of our Baseline SCC algorithm on Xeon Phi is 1.97×
faster than an OpenMP-based implementation. Further, the
multicore CPU algorithm based on Kokkos is only 30%
slower than a hand-tuned OpenMP code. So we conclude
as an answer to question (c), yes, performance-portable
graph algorithms are possible using the previously identified
libraries and optimization techniques.

We intend to apply this methodology to other graph
analytics in future work. There are several research efforts
on using both the host and the accelerator for graph analytic
workloads [12], [13], [17], and this is another avenue for
future work.
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